news banner

Solenoid Valve Basics: What They Are, What They Do, and How They Work What is a Solenoid Valve?

Time : Jan 15, 2025 View : 886

Table of Contents

    What is a Solenoid Valve?

    A solenoid valve is an electromechanical device used to control the flow of a liquid or gas. It is comprised of two features: a solenoid and a valve. The solenoid is an electric coil with free-moving ferromagnetic material in the center of the coil, often referred to as a “plunger.” When voltage is applied to the coil, the solenoid is energized. This action creates a magnetic field that either attracts or repels the plunger and causes it to translate linearly.

    The movement of the plunger alters the position of the components within the valve body to control the specific flow, direction, and pressure of fluid moving through the valve. When current or voltage is removed from the coil, the magnetic field collapses and all internal elements return to their de-energized position.

    Common Uses for Solenoid Valves

    Solenoid valves are a part of everyday life. They control the flow of water in dishwashers, the flow of propane to ignite a gas stove top, and even the flow of fuel in a car engine. These valves are available in a wide range of configurations depending on the system in which they are used and their intended function.

    How Does a Solenoid Valve Function?

    Solenoid valves are used in a near infinite number of applications – from automatic sprinkler systems and inkjet printing to medical devices and satellite propulsion. Generally, their associated functions can be divided into four categories: open and close flow, control flow direction, control flow volume, and regulate flow rate.

    Open and Close Flow

    The most common function for a solenoid valve is to open and close a flow path. For example, a solenoid valve in a dishwasher will be in the closed position when the dishwasher is off in order to conserve water. When the dishwasher is turned on, the valve will open for the period of operation during which water needs to flow onto the kitchenware.

    Control Flow Direction

    A solenoid valve may also be used to control the flow path or direction that a fluid travels. When used for this purpose, the solenoid valve will typically have multiple inlet or outlet ports. Energizing the coil helps to change which ports are open so that the fluid travels through an alternate channel. For example, the valve can be used to mix two fluids together in a specific ratio. In this scenario, the valve will have two inlet ports, or one for each fluid. The outlet port will be connected to the mixing chamber. When the valve is de-energized, fluid “A” will travel into the mixing chamber. When the valve is energized, fluid “B” will travel into the chamber. The ratio of each fluid can be altered by varying the length of time that the valve is energized.

    Control Flow Volume

    When precise flow volume is required, a solenoid valve may be operated to open and close during defined periods of time to allow a specified volume of fluid to flow through the valve. In printers, for example, a solenoid valve can be used to dispense droplets of ink. In these systems, the inlet pressure must remain constant to ensure that the flow volume over a period of time is consistent. When a high degree of accuracy is needed, other factors such as fluid properties and environmental conditions can also impact flow rate.

    Regulate Flow Rate

    A solenoid valve can function to control the flow rate of a liquid. When used for this purpose, the valve may be able to operate quickly enough that varying the frequency at which the valve is energized also varies flow rate through the valve body. This technique is commonly referred to as Pulse Width Modulation (PWM). Solenoid valves can also be designed to operate in a non-binary position in which the valve is neither fully open nor fully closed. These valves are commonly called proportional valves. By adjusting the valve components, overall restriction of the valve changes and meters flow. For instance, oxygen concentrators use solenoid valves to vary the flow rate of oxygen to a patient based on an individual’s need.

    A Detailed Look at the Components that Make Up a Solenoid Valve

    A basic solenoid valve is comprised of a number of components, which are described below.

    • Coil:The coil is commonly made from insulated copper wire. When a current is applied to the coil, an electromagnetic field forms around the cross-section.
    • Electrical Connection:The coil is connected to an interface with an electrical drive circuit and power source. Each coil typically has two connections: one to the power source and one to ground.
    • Bobbin:The coil wire is commonly wrapped around a structural piece called a bobbin. The bobbin helps to hold the wire in the desired position to create a specific magnetic field.
    • Coil Cover/Shielding:A cover is placed around the solenoid coil for protection. The cover may be constructed from a material that will provide shielding. Shielding protects the solenoid coil from interference from external electrical noise and protects the surrounding equipment from interference caused by electromagnetic radiation from the solenoid coil.
    • Plunger/Armature:A ferromagnetic plunger (sometimes referred to as an armature) is placed in the center of the coil or bobbin to convert electrical energy into mechanical work. The magnetic field created from the energized coil will attract or repel the plunger coaxially. The plunger is typically manufactured from a soft iron. Stainless steel materials are not suitable for the plunger because they do not become demagnetized after the current is removed and would not return to their original state.
    • Valve Seal:The position and movement of the plunger controls the components of the valve body to seal or open flow paths.
    • Valve Body:At a minimum, the valve body includes the valve seat and fluidic ports. In more complex valve designs, the valve body may also house additional sub-components to optimize valve performance.
    • Spring:A spring is commonly used within the valve body to bias the plunger and other movable valve components into position when de-energized. Some designs incorporate multiple springs.
    • Plunger Stop:A plunger stop is often employed to control the length of plunger movement, or stroke, when energized.

    Solenoid Valve Configurations and Design ConsiderationsSince solenoid valves are used in a wide range of applications, there are boundless configuration possibilities available. Choosing the appropriate configuration is largely dependent on the valve’s intended use within a system or environment. After all, a solenoid valve that controls liters of hydrogen at cryogenic temperatures has very little in common with one helping to move nanoliters of blood in a laboratory. There are design options available for some of the most basic features of a solenoid valve. Choosing between these options will help to shape the valve’s eventual configuration.

    Number of Valve PortsSolenoids may control fluid travel between two, three, or even four valve ports.A 2-port valve, or 2-way valve (also known as a “2/2 solenoid valve”), is the simplest design. They may serve the on-off function or regulate flow. The ports may be labeled as inlet and outlet.A 3-port valve, or 3-way valve (also known as a “3/2 solenoid valve”), has three ports and two valve seats. It can be used to divert flow, mix fluids, or select between two different fluid paths.A 4-port valve, or 4-way valve (also known as a “4/2 solenoid valve”), has four ports and two valve seats. It is commonly used in hydraulic and pneumatic systems to control double-acting cylinders.

    Valve TypeSolenoid valves can be classified by their valve type, which refers to the way the valve operates. The most common valve types are direct-acting, pilot-operated, and semi-direct-acting.

    • Direct-Acting Solenoid Valves:In a direct-acting solenoid valve, the solenoid directly acts on the valve seat to open or close the valve. These valves are typically used for small flow rates and low pressures.
    • Pilot-Operated Solenoid Valves:In a pilot-operated solenoid valve, the solenoid controls a small pilot valve, which in turn controls the main valve. These valves are typically used for larger flow rates and higher pressures.
    • Semi-Direct-Acting Solenoid Valves:Semi-direct-acting solenoid valves combine features of both direct-acting and pilot-operated valves. They can operate at zero differential pressure, but they also have a pilot valve to assist in opening the main valve at higher pressures.

    Normally Open vs. Normally ClosedSolenoid valves can be either normally open (NO) or normally closed (NC).

    • Normally Closed (NC):A normally closed valve is closed when the solenoid is de-energized and opens when the solenoid is energized. This is the most common type of solenoid valve.
    • Normally Open (NO):A normally open valve is open when the solenoid is de-energized and closes when the solenoid is energized.

    Voltage and Power ConsumptionSolenoid valves are available in a variety of voltage ratings, including AC and DC. The power consumption of a solenoid valve depends on its size, type, and operating conditions.

    Response TimeResponse time is the time it takes for a solenoid valve to open or close after the coil is energized or de-energized. Response time is an important consideration for applications that require precise control of fluid flow.

    Fluid CompatibilityThe materials used in the construction of a solenoid valve must be compatible with the fluid being controlled. Incompatible materials can lead to corrosion, leakage, and premature failure of the valve.

    Environmental ConditionsSolenoid valves are designed to operate in a variety of environmental conditions, including temperature, pressure, and humidity. It is important to select a valve that is suitable for the operating environment.

    Certifications and StandardsSolenoid valves may be certified to various industry standards, such as UL, CSA, and CE. These certifications ensure that the valve meets certain safety and performance requirements.

    Maintenance and TroubleshootingRegular maintenance is essential to ensure the reliable operation of solenoid valves. Common maintenance tasks include cleaning, inspecting for wear and tear, and replacing worn components. Troubleshooting tips can help identify and resolve common problems, such as leaks, coil failures, and improper operation.

    Home
    WhatsApp
    Email
    Contacts